This is a brief guide on how to use R and functions in tigerstats
and related packages to do some very basic descriptive statistics. We will give “templates” for the functions, accompanied by no-frills examples of their use. Consult the function tutorials or other Help documents to learn more about the options for each function.
\[barchartGC(\sim variable, data = MyData)\]
barchartGC(~seat,data=m111survey)
xtabs()
and rowPerc()
:
seating <- xtabs(~seat,data=m111survey)
seating
## seat
## 1_front 2_middle 3_back
## 27 32 12
rowPerc(seating)
##
## seat 1_front 2_middle 3_back Total
## 38.03 45.07 16.9 100
\[barchartGC(\sim exp + resp, data = MyData)\]
barchartGC(~sex+seat,data=m111survey)
xtabs()
and rowPerc()
:
sexSeat <- xtabs(~sex+seat,data=m111survey)
sexSeat
## seat
## sex 1_front 2_middle 3_back
## female 19 16 5
## male 8 16 7
rowPerc(sexSeat)
## seat
## sex 1_front 2_middle 3_back Total
## female 47.50 40.00 12.50 100.00
## male 25.81 51.61 22.58 100.00
histogram()
, densityplot()
, or bwplot()
.
\[function(\sim variable,data=myData)\]
densityplot(~fastest,data=m111survey)
Use favstats()
:
favstats(~fastest,data=m111survey)
## min Q1 median Q3 max mean sd n missing
## 60 90.5 102 119.5 190 105.9014 20.8773 71 0
\[histogram(\sim numeric \vert factor, data=MyData)\]
\[densityplot(\sim numeric \vert factor, data=MyData)\]
\[bwplot(numeric \sim factor, data=MyData)\]
densityplot(~fastest|sex,data=m111survey)
favstats()
again:
\[favstats(numeric \sim factor, data=myData)\]
favstats(fastest~sex,data=m111survey)
## sex min Q1 median Q3 max mean sd n missing
## 1 female 60 90 95 110.0 145 100.0500 17.60966 40 0
## 2 male 85 99 110 122.5 190 113.4516 22.56818 31 0
Scatter plots:
\[xyplot(response \sim explanatory, data = myData)\]
xyplot(GPA~fastest,data=m111survey,type=c("p","r"))
\[lmGC(response \sim explanatory, data=myData)\]
lmGC(GPA~fastest,data=m111survey)
##
## Linear Regression
##
## Correlation coefficient r = -0.1406
##
## Equation of Regression Line:
##
## GPA = 3.5562 + -0.0034 * fastest
##
## Residual Standard Error: s = 0.5053
## R^2 (unadjusted): R^2 = 0.0198
polyfitGC(OBP~Season,data=henderson,degree=2)
## Polynomial Regression, Degree = 2
##
## Residual Standard Error: s = 0.0223
## R^2 (unadjusted): R^2 = 0.289
fastGPAMod <- lmGC(GPA~fastest,data=m111survey)
predict(fastGPAMod,x=100)
## Predict GPA is about 3.216,
## give or take 0.5092 or so for chance variation.